Effect of mould expansion on pattern allowances in sand casting of steel

نویسندگان

  • F. Peters
  • R. Voigt
  • S. Z. Ou
  • C. Beckermann
چکیده

For steel castings produced in sand moulds, the expansion of the sand and have a significant impact on the final size and shape of the casting. Experiments are conducted using a cylindrical casting to study this effect for different sands (silica and zircon) and different sand binder systems (phenolic urethane and sodium silicate). The type of sand has a significant effect on the final casting dimensions, in particular because the expansion of silica sand can be irreversible. The sand expansion effect is enhanced by the presence of sodium silicate binder. In addition, the size of the core, which in the present experiments controls the amount of steel in the mould and thus the heat input to the mould, strongly affects the internal and external dimensions of the resulting casting. A combined casting and stress simulation code is used to predict the dimensional changes of the castings. In several cases, the pattern allowances are predicted successfully both for free and hindered shrinkage cases. Disagreements between the simulation results and the measurements can be attributed to the fact that the stress model does not account for the irreversible nature of the silica sand expansion, which is important when silica sand is heated to temperatures above y1200uC; and the outer mould sand surrounding the casting, which can cause inaccuracies when there is significant early mould expansion, hindrance, or movement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-dimensional Numerical Simulation of Metal Flow and Solidification in the Multi-cavity Casting Moulds of Automotive Components

The liquid metal flow and the solidification behaviours in a multi-cavity casting mould of two automotive cast parts were simulated in three dimensions. The commercial code, FLOW-3D® was used because it can track the front of the molten metal by a Volume of Fluid (VOF) method and allows complicated parts to be modeled by the Fractional Area/Volume Obstacle Representation (FAVOR) meth...

متن کامل

Prediction of burn-on and mould penetration in steel casting using simulation

Burn-on and penetration defects in steel casting are principally caused by localised overheating of the sand mould or cores. Such overheating can cause liquid metal to compromise the mould surface and entrain onto the surface of the mould. A method has been developed to predict likely burn-on and penetration defect locations as part of a standard casting simulation. The method relies on determi...

متن کامل

An Investigation on Mold Powders Properties Consumed in Iran

   This paper describes the work done between IUST and two Iranian steelworks to evaluate and review the performance of mould fluxes in current use for continuous casting. Calculations have been performed to compare actual values of powder consumption, viscosity and break temperature of the fluxes in current use with required values derived from published empirical rules for casting conditions....

متن کامل

Modeling and Removal of Inclusions in Continuous Casting

Continuous casting is the central process phase with strong influence on the final quality of the steel products. Several different models for continuous casting have been developed at the Laboratory of Metallurgy at Helsinki University of Technology (TKK) concerning e.g. fluid flow, heat transfer, thermodynamic equilibria and statistical approaches. In this paper the inhouse solidification mod...

متن کامل

Analyzing the Failure of Master Mould in Casting of Copper Anode Moulds and Suggesting a more Suitable Metal Mould

Master moulds are used to cast copper anode moulds. These iron moulds are made of grey or nodular cast irons. According to desirable properties of ductile irons, it was expected that ductile cast iron ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008